Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 13(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1259627

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is a readily transmissible and potentially deadly pathogen which is currently re-defining human susceptibility to pandemic viruses in the modern world. The recent emergence of several genetically distinct descendants known as variants of concern (VOCs) is further challenging public health disease management, due to increased rates of virus transmission and potential constraints on vaccine effectiveness. We report the isolation of SARS-CoV-2 VOCs imported into Australia belonging to the B.1.351 lineage, first described in the Republic of South Africa (RSA), and the B.1.1.7 lineage originally reported in the United Kingdom, and directly compare the replication kinetics of these two VOCs in Vero E6 cells. In this analysis, we also investigated a B.1.1.7 VOC (QLD1516/2021) carrying a 7-nucleotide deletion in the open reading frame 7a (ORF7a) gene, likely truncating and rendering the ORF7a protein of this virus defective. We demonstrate that the replication of the B.1.351 VOC (QLD1520/2020) in Vero E6 cells can be detected earlier than the B.1.1.7 VOCs (QLD1516/2021 and QLD1517/2021), before peaking at 48 h post infection (p.i.), with significantly higher levels of virus progeny. Whilst replication of the ORF7a defective isolate QLD1516/2021 was delayed longer than the other viruses, slightly more viral progeny was produced by the mutant compared to the unmutated isolate QLD1517/2021 at 72 h p.i. Collectively, these findings contribute to our understanding of SARS-CoV-2 replication and evolutionary dynamics, which have important implications in the development of future vaccination, antiviral therapies, and epidemiological control strategies for COVID-19.


Subject(s)
Open Reading Frames/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Proteins/genetics , Virus Replication , Adult , Animals , Australia , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , High-Throughput Nucleotide Sequencing , Humans , Kinetics , Middle Aged , Mutation , Nasopharynx/virology , Phylogeny , SARS-CoV-2/classification , South Africa , United Kingdom , Vero Cells
2.
ACS Biomater Sci Eng ; 6(9): 4858-4861, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-841401

ABSTRACT

In this letter, we report the ability of the nanostructured aluminum Al 6063 alloy surfaces to inactivate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There was no recoverable viable virus after 6 h of exposure to the nanostructured surface, elucidating a 5-log reduction compared to a flat Al 6063 surface. The nanostructured surfaces were fabricated using wet-etching techniques which generated nanotextured, randomly aligned ridges approximately 23 nm wide on the Al 6063 alloy surfaces. In addition to the excellent mechanical resilience properties previously shown, the etched surfaces have also demonstrated superior corrosion resistance compared to the control surfaces. Such nanostructured surfaces have the potential to be used in healthcare environment such as hospitals and public spaces to reduce the surface transmission of SARS-CoV-2 and combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Microbial Viability/drug effects , Nanostructures/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Alloys/chemistry , Aluminum/chemistry , Aluminum/pharmacology , Corrosion , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL